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Abstract. A local method is developed for solving the Schrödinger equation. The method is
local in the sense that it can determine the value of the solution of the Schrödinger equation at
an arbitrary point directly rather than extracting this value from the field solution. The method
is based on properties of diffusion processes, the Itô formula, and Monte Carlo simulation.
Simplicity, accuracy, and generality are the main features of the proposed local solution. The
extension of the proposed method to solve the stochastic version of the Schrödinger equation is
elementary. Two examples with Dirichlet and Neumann boundary conditions are presented to
demonstrate the application and evaluate the accuracy of the proposed local solution.

1. Introduction

Consider the Schrödinger equation

1
21ψ(x)+ q(x)ψ(x) = 0 x ∈ D
ψ(x) = g(x) x ∈ ∂D (1)

whereD ⊂ Rd is a bonded set with boundary∂D, 1 =∑d
i=1 ∂

2/∂x2
i denotes the Laplace

operator, andg; q are specified functions. Current methods for solving equation (1)
include (a) analytical derivations applied successfully to a limited number of relevant cases,
(b) classical numerical techniques, such as the finite-difference and finite-element methods,
(c) perturbation and Neumann series expansions or related methods [1], and (d) Monte Carlo
simulation based on an iteration procedure using the integral form of (1) and samples drawn
from the Green function of the operator of this equation [2, 3]. The method can be applied
to find the lowest eigenfunction and eigenvalue of (1) and modified forms of this equation.

The current methods of solution of (1) are global in the sense that they give the solution
of this equation at all points ofD, or a discrete approximation of this domain, even if the
value ofψ is needed at only a single pointx ∈ D. This paper presents a local solution
of (1) that allows the calculation of the value ofψ at an arbitrary pointx ∈ D directly.
The proposed solution is based on properties of diffusion and Brownian motion processes,
the Itô formula, and Monte Carlo simulation. Simplicity, accuracy, and generality are the
essential features of the proposed local solution of (1). The method can be extended to
obtain the local solution of (i) the stochastic version of (1) in which the functionq is a
real-valued random field defined onD and (ii) a generalized version of the Schrödinger
operator defining (1) considered later in the paper (equation (18)). Two examples with the
Dirichlet boundary conditions of (1) and Neumann boundary conditions are presented to
demonstrate the application and evaluate the accuracy of the proposed local solution.
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2. The Itô formula

Let {X(t) ∈ Rd+1, t > 0} be a diffusion process defined by the stochastic differential
equation

dX(t) = a(X(t)) dt + b(X(t)) dB(t) (2)

where the drifta and the diffusionb are (d + 1, 1) and (d + 1, d ′) matrices. The driving
input B ∈ Rd ′ consists ofd ′ independent one-dimensional Brownian motions so that it
has stationary independent Gaussian incrementsB(t) −B(s), t > s, with mean zero and
covariancei(t − s), wherei denotes the identity matrix. Ifa and b satisfy the uniform
Lipschitz conditions

‖a(x)− a(x′)‖ 6 c‖x− x′‖
‖b(x)− b(x′)‖m 6 c‖x− x′‖ (3)

wherec is a constant,‖ · ‖ denotes the Euclidean norm, and‖b‖m = (
∑d+1

i=1

∑d ′
j=1 b

2
i,j )

1/2,
then the solution

X(t)−X(0) =
∫ t

0
a(X(s)) ds +

∫ t

0
b(X(s)) dB(s) (4)

of (2) exists and is unique [4]. The integrals
∫ t

0 a(X(s)) ds and
∫ t

0 a(X(s)) dB(s) of (4)
are defined in the Riemann sense and the Itô sense, respectively. The Riemann definition
cannot be used for

∫ t
0 X(X(s)) dB(s) because the sample paths of the Brownian motion

are of unbounded variation [4, 5].
Consider a functionf : Rd+1 → R with continuous second-order partial derivatives.

The integral and differential forms of the Itô formula are

f (X(t))− f (X(0)) =
d+1∑
i=1

∫ t

0

∂f (X(s))

∂xi

[
ai(X(s)) ds +

d ′∑
j=1

bi,j (X(s)) dBj(s)

]

+1

2

d+1∑
k,l=1

∫ t

0

∂2f (X(s))

∂xk∂xl
[b(X(s))b(X(s))T]k,l ds (5)

and

df (X(t)) =
d+1∑
i=1

∂f (X(t))

∂xi

[
ai(X(t)) dt +

d ′∑
j=1

bi,j (X(t)) dBj(t)

]

+1

2

d+1∑
k,l=1

∂2f (X(t))

∂xk∂xl
[b(X(t))b(X(t))T]k,l dt (6)

respectively [4, 5], wherebT denotes the transpose ofb. The last terms of equations (5) and
(6) with coefficient 1/2 are not present in the classical calculus.

3. Local solution of the Schr̈odinger equation

Consider a diffusion process{X(t) ∈ Rd+1, t > 0} defined by the stochastic differential
equations

dXi(t) = dBi(t) i = 1, . . . , d

dXd+1(t) = q(X1(t), . . . , Xd(t))Xd+1(t) dt (7)
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in which q is the function considered in (1) andB = (B1, . . . , Bd) denotes a Brownian
motion process consisting ofd one-dimensional independent Brownian motion processes.
The definition ofX given by (7) shows that (i) the firstd elements ofX coincide with the
Brownian motion processB ∈ Rd and (ii) the integral form of the last equality, called the
Feyman–Kac functional [4], is

Xd+1(t) = exp

[ ∫ t

0
q(X1(s), . . . , Xd(s)) ds

]
= exp

[ ∫ t

0
q(B(s)) ds

]
(8)

for the initial conditionXd+1(0) = 1.
Let f : Rd+1→ R be a function defined by

f (X(t)) = ψ(X1(t), . . . , Xd(t))Xd+1(t) = ψ(B(t))Xd+1(t) (9)

depending on the diffusion process of equation (7) and a functionψ assumed to have
continuous second-order partial derivatives. The Itô formula of equation (5) applied to
f (X) andX defined by (7) and (9) gives

f (X(t))− f (X(0)) =
∫ t

0

∂f (X(s))

∂xd+1
q(X1(s), . . . , Xd(s))Xd+1(s) ds

+
d∑
i=1

∫ t

0

∂f (X(s))

∂xi
dBi(s)+ 1

2

d∑
i=1

∫ t

0

∂2f (X(s))

∂x2
i

ds (10)

becauseX has the drift and diffusion coefficientsai(x) = 0 for i = 1, . . . , d;
ad+1(x) = q(x1, . . . , xd)xd+1; bi,i(x) = 1 for i = 1, . . . , d; and bi,j (x) = 0 for all the
other values ofi andj in {1, . . . , d + 1}. The It̂o formula of equation (10) becomes

ψ(B(t))Xd+1(t)− ψ(B(0)) =
∫ t

0
ψ(B(s))q(B(s))Xd+1(s) ds

+
d∑
i=1

∫ t

0

∂ψ(B(s))

∂xi
Xd+1(s) dBi(s)+ 1

2

∫ t

0
1ψ(B(s))Xd+1(s) ds (11)

by the definitions ofX andf (equations (7) and (9)) and the initial conditionXd+1(0) = 1
(equation (8)). The average of equation (11) is

E[ψ(B(t))Xd+1(t)] − E[ψ(B(0))] = E
[ ∫ t

0
Xd+1(s)

(
1

2
1ψ + qψ

)
(B(s)) ds

]
(12)

because the Brownian motion has independent increments with mean zero so that the
expectationE[

∑d
i=1

∫ t
0 (∂ψ(B(s))/(∂xi)Xd+1(s) dBi(s)] is zero.

Let

T (x) = inf{t > 0 :B(t) /∈ D} (13)

denote the first time when a Brownian motionB starting atx ∈ D, that is,B(0) = x,
leaves a bounded domainD ⊂ Rd . It can be shown that the Itô formula of equation (5)
holds for t replaced with the random timeT (x) defined by equation (13) [4, 5]. IfD is
the domain of definition of equation (1) andψ denotes the solution of this equation, then
equation (12) witht replaced byT (x) gives

E[ψ(B(T (x)))Xd+1(T (x))] − E[ψ(B(0))] = 0 (14)

becauseB(s) ∈ D for s < T (x) and ψ is the solution of (1) so that
[(1/2)1ψ + qψ ](B(s)) = 0. Moreover, the expectationE[ψ(B(0))] coincides withψ(x)
as the initial value of the Brownian motionB(0) = x is not random and the value
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of ψ(B(T (x))) is g(B(T (x))) by the boundary conditions of (1) and the property
B(T (x)) ∈ ∂D (equation (13)). Hence, (14) becomes

ψ(x) = Ex
[
g(B(T (x))) exp

(∫ T (x)

0
q(B(s)) ds

)]
(15)

where Ex denotes a conditional expectation corresponding to the initial value of the
Brownian motionB(0) = x. This equation shows that the value of the solution of (1)
at an arbitrary pointx of the domainD is equal to an expectation depending on the first
time T (x) when a Brownian motionB starting atx ∈ D leavesD and the sample paths of
B during the time interval [0, T (x)]. The formula of equation (15) gives the local solution
of (1).

Generally, it is not possible to calculate the expectation of equation (15) in closed form.
However, this expectation can be estimated from samples ofB generated by Monte Carlo
simulation. The generation of samples of the Brownian motionB involves four steps. First,
a sequence of discrete times{tk} needs to be defined, for example,t0 = 0 and tk = k h,
k = 0, 1, . . . , whereh > 0 is a small time step. Second, a sequence of independent samples
{ξs(ω)}, s = 1, 2, . . . , needs to be generated from ad-dimensional Gaussian vector with
mean zero and covariance matrixh i. Simple methods are available to generate this sequence
[7]. The sample pathω of the Brownian motion is equal to

B(tk, ω) = x+
k∑
s=1

ξs(ω) (16)

at time tk. Third, the sample values of the exit timeT (x, ω) and the boundary exit point
B(T (x, ω), ω) need to be recorded. Fourth, the value ofψ at x ∈ D can be estimated by

ψ̂(x) = 1

ns

ns∑
ω=1

[
g(B(T (x, ω), ω))exp

(
h

n(ω)∑
k=1

q(B(k h, ω))

)]
(17)

in which ns denotes the number of samples ofB andn(ω) is the number of time steps to
exist fromD for sampleω.

The proposed method based on equations (15)–(17) can be generalized to find the local
solution of the stochastic version of (1) in which functionq is replaced by a real-valued
random fieldQ defined onD. The solution of this generalization of the Schrödinger
equation is a random field9. The algorithm for finding statistics of9(x) at an arbitrary
point x ∈ D involves three steps. First, samples{q(x, ν)} of Q(x), x ∈ D, need to be
generated. Second, equation (17) can be applied for each realizationq(x, ν) of Q(x) to
obtain sample valueŝψ(x, ν) of the solution9(x). Third, statistics of9(x) can be inferred
from its samples{ψ̂(x, ν)}.

4. Generalization

Suppose thatψ is the solution of the generalized version

1

2

d∑
i,j=1

γij (x)
∂2ψ(x)

∂xi∂xj
+

d∑
i=1

µi(x)
∂ψ(x)

∂xi
+ q(x)ψ(x) = 0 x ∈ D (18)

of (1), whereD ⊂ Rd is an open and bounded set andψ(x) = g(x), x ∈ ∂D, on the
boundary ofD.
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Denote byY andZ the firstd elements and the elementd + 1 of the diffusion process
X (equation (2)) defined by

dY (t) = µ(Y (t)) dt + σ(Y (t)) dB(t)

dZ(t) = q(Y (t)) Z(t)dt (19)

where the drift and diffusion coefficientsµ and σ of Y are (d, 1) and (d, d ′) matrices
related to the coefficients of equation (18) byµ(y) = {µi(y)} and(σ(y)σ(y)T)ij = γ (y)ij
andB ∈ Rd ′ consists ofd ′ independent standard Brownian motions. The Itô formula of
equation (5) gives

ψ(Y (t)) Z(t)− ψ(Y (0)) Z(0)

=
∫ t

0

[ d∑
i=1

∂ψ(Y (s))

∂yi
Z(s) dYi(s)+ q(Y (s)) Z(s)ψ(Y (s)) ds

]

+1

2

d∑
i,j=1

∫ t

0

∂2ψ(Y (s))

∂yi∂yj
Z(s) γ (Y (s))ij ds (20)

for X defined by equation (19) andf (X) = ψ(Y )Z. Take x ∈ D arbitrary and set
Y (0) = x; Z(0) = 1 in equation (20). The corresponding expectation of the resulting
equation is

Ex[ψ(Y (T (x)))Z(T (x))] − ψ(x) = Ex
∫ T (x)

0

[
1

2

d∑
i,j=1

γij (Y (s))
∂2ψ(Y (s))

∂yi∂yj

+
d∑
i=1

µi(Y (s))
∂ψ(Y (s))

∂yi
+ q(Y (s))ψ(Y (s))

]
Z(s) ds (21)

in which T (x) = inf{t > 0 : Y (t) /∈ D} denotes the first time the processY starting at
Y (0) = x existsD. If ψ is the solution of equation (18), then (21) simplifies to

ψ(x) = Ex
[
g(Y (T (x))) exp

(∫ T (x)

0
q(Y (s)) ds

)]
(22)

becauseY (s) ∈ D for s ∈ [0, T (x)) so that the right-hand term of (21) is zero,
Y (T (x)) ∈ ∂D, the unknown functionψ is equal to a specified functiong on the boundary
of D, andZ(t) = exp(

∫ t
0 q(Y (s)) ds).

Generally, it is not possible to obtain the expectation of equation (22) in closed form.
However, estimates of this expectation can be calculated from samples ofY . Estimators
as defined by equation (17) can be used to find approximationsψ̂(x) of ψ(x). Samples of
the diffusion processY can be generated from the finite-difference approximation

Y (t + h) = Y (t)+ µ(Y (t))h+ σ(Y (t))(B(t + h)−B(t)) Y (0) = x (23)

of equation (19), whereh > 0. More accurate algorithms for generating samples ofY are
available [6].

5. Numerical examples

Two one-dimensional examples with known analytical solutions are used to illustrate the
proposed local solution and evaluate its accuracy. The Schrödinger operators considered
in these examples are identical but satisfy different types of boundary conditions, Dirichlet
boundary conditions and Neumann–Dirichlet boundary conditions.
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Example 1. Suppose thatD is the interval (0, l) of the real line andq is a constant
(equation (1)). The corresponding Schrödinger equation

1
2ψ
′′(x)+ qψ(x) = 0 (24)

has the solution

ψ(x) = α cos(
√

2qx)+ β − α cos(
√

2ql)

sin(
√

2ql)
sin(

√
2qx) (25)

for the Dirichlet boundary conditionsψ(0) = α, ψ(l) = β, whereα, β are real numbers.
The estimate ofψ(x) at an arbitrary pointx ∈ (0, l) is (equation (17))

ψ̂(x) = 1

ns

[
α

n′s∑
ω′=1

exp(qτ(ω′))+ β
n′′s∑

ω′′=1

exp(qτ(ω′′))
]

= c′(x)α + c′′(x)β (26)

wheren′s andn′′s denote the number of samples of the Brownian motionB that exitD = (0, l)
through the left and the right ends of this interval,n′s + n′′s = ns , andc′(x); c′′(x) give the
weights of the boundary conditionsψ(0) = α; ψ(l) = β in the expression of the estimated
value ofψ(x). Let e(x) = 100|ψ(x) − ψ̂(x)|/|ψ(x)| be the error of the estimatêψ(x)
of ψ(x) at an arbitrary pointx ∈ (0, l). The largest erroremax recorded atx = (k/10)l,
k = 1, . . . ,9, does not exceed 5% forl = 1, α = 1, β = 2, q = 1, h = 0.001, and
ns = 500. This error can be reduced by increasing the sample size and/or reducing the time
steph used for generating the sample paths of the Brownian motion process. For example,
emax6 1.5% for ns = 1000 andh = 0.0005.

The estimatorψ̂ of equation (26) is less accurate when the domainD and/or the
parameterq is large. This unsatisfactory performance is caused by the dependence of
ψ̂(x) on exp(qT (x)), a random variable with heavy tail ifD and/orq is large. To clarify
this statement consider the special caseα = β = 1, q = 1, l = 2a, andx = a in which
ψ̂(x) is equal to the expected value of exp(T (a)). Table 1 gives the estimates of the mean
E[T (a)] and the coefficient of variation c.o.v.[T (a)] of T (a) and the coefficient of variation
c.o.v.[exp(T (a))] of exp(T (a)) calculated from 1000 sample paths of the Brownian motion
generated with a time steph = 0.001, where the coefficient of variation c.o.v.[U ] of a
random variableU is the ratio of the standard deviation to the mean ofU . The relatively
large uncertainty inT (a) is amplified by the mappingT (a)→ exp(T (a)), as demonstrated
by the coefficients of variation of exp(T (a)) that are much larger than the corresponding
coefficients of variation ofT (a). The large coefficients of variation of exp(T (a)) are the
cause of unstable estimates for the expectation of exp(T (a)). In fact, E[exp(T (a))] may
not even exist. For example,E[exp(T (a))] is not bounded ifT (a) is an exponential random
variable with expectation 1/λ and 0< λ < 1. In this case, it is not possible to obtain stable
estimates of the mean of exp(T (a)) from samples ofT (a) [7].

Table 1. Statistics ofT (a) and exp(T (a)).

Estimates

a E[T (a)] c.o.v.[T (a)] c.o.v.[exp(T (a))]

1 1.0097 0.7554 1.7506
2 4.0946 0.7663 31.6228
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The performance of the estimator̂ψ of equation (26) can be improved by dividing
the domain of integrationD into sufficiently small subdomains for which this estimator
is accurate. Suppose thatD = (0, l) is divided into m + 1 equal intervals
and let αk = ψ(kl/(m + 1)) be the unknown value ofψ at the division point
xk = kl/(m+ 1), k = 1, . . . , m. Relationshipsαk = c′kαk−1 + c′′kαk+1 between the values
of ψ at the division points can be obtained from equation (26) applied in the intervals
((k − 1)l/(m+ 1), (k + 1)l/(m+ 1)), k = 1, . . . , m. The unknown values ofψ at the
division points can be obtained from these relationships and the boundary conditions giving
two additional equations,α0 = α andαm+1 = β. For example, letα = 1, β = 2, q = 1,
l = 2, andm = 3. The relationships between the values ofψ at the division points are
ψ(k/2) = αk = (αk−1+αk+1)/2, k = 1, 2, 3, by the symmetry of the Brownian motion and
equation (26). These equations and the boundary conditions giveα1 = 1.25, α2 = 1.50,
andα3 = 1.75. Suppose thatψ(0.3) needs to be estimated. The estimate ofψ(0.3) can
be obtained by the proposed method from equation (26) for the domain (0, 0.5) and the
boundary conditionsψ(0) = 1, ψ(0.5) = 1.25. The error of this estimate is under 1.2%
for ns = 500 andh = 0.0005.

The partition of the domain of integration in subdomains of sufficiently small size
discussed for one-dimensional problems can be extended to solve the Schrödinger equation
in higher dimensions. First, the domainD needs to be divided inm+ 1 sufficiently small
subdomains delimited by the boundaries{∂Dk}, k = 1, . . . , m. Second, points{xk,p} have
to be selected on each∂Dk and spline or other approximations developed for the values of
ψ everywhere in∂Dk depending on the unknown valuesαk,p = ψ(xk,p) of this function
at {xk,p}. Third, the proposed method can be applied to relate the valuesαk,p with αk−1,p

andαk+1,p. These relationships and the boundary conditions can be used to estimate{αk,p}.
Fourth,ψ(x) can be estimated by applying the proposed method in the subdomain ofD

includingx.

Example 2. Consider the Schrödinger operator of equation (24) with the boundary
conditionsψ ′(0) = α andψ(l) = β. The exact solution is

ψ(x) = β − (α/√2q) sin(
√

2ql)

cos(
√

2ql)
cos(

√
2qx)+ α√

2q
sin(

√
2qx) (27)

for q > 0.
To incorporate the Neumann boundary condition atx = 0 it is necessary to replace

the Brownian motion processB used in the previous example with the reflected Brownian
motion at zero defined by

|B(t)| = B̂(t)+ L(t) (28)

in which B̂ is a Brownian motion andL is a process with increasing continuous sample
paths that can have non-zero increments only at the reflection times, that is, at the times
when |B| is zero. The processL, called the local time of the Brownian motion at zero, is
given by the limit [4, 8]

L(t) = lim
ε↓0

1

2ε

∫ t

0
1(−ε,ε)(B(s)) ds (29)

where 1(−ε,ε)(u) is one foru ∈ (−ε, ε) and zero otherwise. The Itô formula can be extended
to incorporate reflected processes and has the form [8]



8676 M Grigoriu

ψ(|B(t)|)X2(t)− ψ(x) =
∫ t

0
ψ ′(|B(s)|)X2(s) sign(B(t)) dB(s)

+q
∫ t

0
ψ(|B(s)|)X2(s) ds + 1

2

∫ t

0
ψ ′′(|B(s)|)X2(s) ds

+ lim
ε↓0

1

2ε

∫ t

0
ψ ′(|B(s)|)X2(s)1(−ε,ε)(B(s)) ds (30)

for X ∈ R2 with elementsX1 = |B| and X2 given by the differential equation
dX2(t) = qX2(t) dt [8]. This version of the It̂o formula gives

ψ(x) = Ex [ψ(|B(T (x))|)X2(T (x))] − α Ex
[

lim
ε↓0

1

2ε

∫ T (x)

0
1(−ε,ε)(B(s))X2(s) ds

]
(31)

by averaging, whereT (x) denotes the first exit time of|B| starting at|B(0)| = x from
D = (0, l). The estimates ofψ based on equation (31) and samples ofX are in error by
less than 2% forα = 1, β = 2, q = 1, l = 1, h = 0.0005, andns = 500.

6. Conclusions

A local method was developed for solving the Schrödinger equation. The method is local
in the sense that the solution of the Schrödinger equation can be obtained at an arbitrary
point directly rather than by extracting this value from the field solution. The method is
based on properties of diffusion processes, the Itô formula, and Monte Carlo simulation.
The essential features of the proposed method are simplicity, accuracy, and generality. The
method can be extended to obtain the local solution of the stochastic and generalized versions
of the classical Schrödinger equation. Two examples with Dirichlet and Neumann boundary
conditions were presented to demonstrate the application and evaluate the performance of
the proposed local solution.
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